Свойства камней
Вернуться в начало раздела Магия
Вернуться в начало раздела Исцеляющая сила предметов, икон, святых мест

Свойства камней
Жемчужина

Камень бериллий. Свойства бериллия. Описание бериллия

Бериллий

Бериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.

Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли "глюциний" (от греч. glykys - сладкий) или "глиций". Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные - в начале 30-х годов 20 века.

Распространение бериллия в природе. Бериллий - редкий элемент. Бериллий - типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические свойства. Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

Химические свойства. В химических соединениях Бериллий 2-валентен (конфигурация внешних электронов 2S2). Бериллий обладает высокой химической активностью, но компактный металл устойчив на воздухе благодаря образованию тонкой и прочной пленки оксида ВеО. При нагревании выше 800 oС быстро окисляется. С водой до 100 oС Бериллий практически не взаимодействует. Легко растворяется в плавиковой, соляной, разбавленной серной кислотах, слабо реагирует с концентрированной серной и разбавленной азотной кислотами и не реагирует с концентрированной азотной. Растворяется в водных растворах щелочей, образуя соли бериллаты, например Na2BeO2. При комнатной температуре реагирует с фтором, а при повышенных - с других галогенами и сероводородом. Бериллий взаимодействует с азотом при температуре выше 650 оС с образованием нитрида Be3N2 и при температуре выше 1200 оС с углеродом, образуя карбид Ве2С. С водородом практически не реагирует во всем диапазоне температур. Гидрид Бериллия получен при разложении бериллийорганических соединений и устойчив до 240 оС. При высоких температурах Бериллий взаимодействует с большинством металлов, образуя бериллиды; с алюминием и кремнием дает эвтектические сплавы. Растворимость примесных элементов в Бериллии чрезвычайно мала. Мелкодисперсный порошок Бериллия сгорает в парах серы, селена, теллура. Расплавленный Бериллий взаимодействует с большинством оксидов, нитридов, сульфидов и карбидов. Единственно пригодным материалом тиглей для плавки Бериллия служит оксид бериллия.

Гидрооксид Be(OH)2 - слабое основание с амфотерными свойствами. Соли Бериллия сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, их водные растворы вследствие гидролиза имеют кислую реакцию. Фторид BeF2 с фторидами щелочных металлов и аммония образует фторбериллаты, например Na2BeF4, имеющие большое промышленное значение. Известен ряд сложных бериллийорганических соединений, гидролиз и окисление некоторых из них протекают со взрывом.

Получение Бериллия. В промышленности металлический Бериллий и его соединения получают переработкой берилла в гидрооксид Ве(ОН)2 или сульфат BeSO4. По одному из способов, измельченный берилл спекают с Na2SiF6, образующиеся фторбериллаты натрия Na2BeF4 и NaBeF3 выщелачивают из смеси водой; при добавлении к этому раствору NaOH в осадок выпадает Ве(ОН)2. По другому способу, берилл спекают с известью или мелом, спек обрабатывают серной кислотой; образующийся BeSO4 выщелачивают водой и осаждают аммиаком Ве(ОН)2. Более полная очистка достигается многократной кристаллизацией BeSO4, из которого прокаливанием получают ВеО. Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведется с целью получения BeF2 или ВеCl2.

Металлический Бериллий получают восстановлением BeF2 магнием при 900-1300°С или электролизом ВеСl2 в смеси с NaCl при 350 oС.

Полученный металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в небольших количествах - зонной плавкой, применяют также электролитическое рафинирование.

Из-за трудностей получения качественных отливок заготовки для изделий из Бериллия готовят методами порошковой металлургии. Бериллий измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 oС. Прутки, трубы и другие профили получают выдавливанием при 800-1050 oС (горячее выдавливание) или при 400-500 oС (теплое выдавливание). Листы из Бериллия получают прокаткой горячепрессованных заготовок или выдавленных полос при 760-840 oС. Применяют и других виды обработки - ковку, штамповку, волочение. При механической обработке Бериллия пользуются твердосплавным инструментом.

Применение Бериллия. Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов и удовлетворительной стойкости в условиях радиации делает Бериллий одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. В Бериллии выгодно сочетаются малая плотность, высокий модуль упругости, прочность, теплопроводность. По удельной прочности Бериллий превосходит все металлы. Благодаря этому в конце 50 - начале 60-х годов Бериллий стали применять в авиационной, ракетной и космической технике и гироприборостроении. Однако высокая хрупкость Бериллия при комнатной температуре - главное препятствие к его широкому использованию как конструкционного материала. Бериллий входит в состав сплавов на основе Al, Mg, Cu и других цветных металлов.

Некоторые бериллиды тугоплавких металлов рассматриваются как перспективные конструкционные материалы в авиа- и ракетостроении. Бериллий применяется также для поверхностной бериллизации стали. Из Бериллия изготовляют окна рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). Бериллий применяется в нейтронных источниках на основе радия, полония, актиния, плутония, так как он обладает свойством интенсивного излучения нейтронов при бомбардировке ?-частицами. Бериллий и некоторые его соединения рассматриваются как перспективное твердое ракетное топливо с наиболее высокими удельными импульсами.

Широкое производство чистого Бериллия началось после 2-й мировой войны. Переработка Бериллия осложняется высокой токсичностью летучих соединений и пыли, содержащей Бериллий, поэтому при работе с Бериллием и его соединениями нужны специальные меры защиты.

Бериллий в организме. Бериллий присутствует в тканях многих растений и животных. У животных Бериллий распределяется во всех органах и тканях. Около 50% усвоенного животным Бериллия выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Биологическое значение Бериллий мало выяснено; оно определяется участием Бериллий в обмене Mg и Р в костной ткани. При избытке в рационе Бериллия происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Бериллия. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Бериллия. Под влиянием Бериллия при недостатке фосфора развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических провинциях, богатых Бериллием.

Свойства камня Бериллонит

Вернуться в начало раздела Магия
Вернуться в начало раздела Исцеляющая сила предметов, икон, святых мест

Красивая, здоровая и счастливая. Рассылка www.InMoment.ru
Подписаться письмом

Поиск по сайту